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Threshold Behavior of Autoconversion Process  
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Abstract.  The recently derived theoretical threshold function associated with the 

autoconversion process is generalized to account for the effect of the relative dispersion 

of the cloud droplet size distribution. This generalized threshold function theoretically 

demonstrates that the relative dispersion, which has been largely neglected to date, 

essentially controls the cloud-to-rain transition if the liquid water content and the droplet 

concentration are fixed. Comparison of the generalized threshold function to existing ad 

hoc threshold functions further reveals that the essential role of the spectral shape of the 

cloud droplet size distribution in rain initiation has been unknowingly buried in the 

arbitrary use of ad hoc threshold functions in atmospheric models such as global climate 

models, and that none of the commonly used ad hoc threshold functions accurately 

describe the threshold behavior of the autoconversion process that likely occurs in 

ambient clouds. 
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1. Introduction 

The autoconversion process whereby cloud droplets grow into embryonic raindrops 

is a key microphysical process that needs to be parameterized in atmospheric models 

such as cloud resolving models and global climate models [Kessler, 1969; Manton and 

Cotton, 1977; Liou and Ou, 1989; Baker, 1993; Liu and Daum, 2004]. Accurate 

parameterization of the autoconversion process is especially important for estimating the 

second indirect aerosol effect. [Boucher et al., 1995; Lohmann and Fleichter, 1997; 

Rotstayn, 2000; Rotstayn and Liu, 2005].  

 All the autoconversion parameterizations that have been developed so far can be 

generically written as 

 0P TP= ,    [1] 

where P is the autoconversion rate; P0 is the rate function describing the conversion rate 

after the onset of the autoconversion process, and T is the threshold function describing 

the threshold behavior of the autoconversion process. The rate function P0 has been the 

primary focus of previous studies, and great progress has been made over the last few 

decades [Kessler, 1969; Manton and Cotton, 1977; Liou and Ou, 1989; Baker, 1993; Liu 

and Daum, 2004; Chen and Liu, 2004; Wood, 2005]. The threshold function, however, 

has received little attention, and the commonly used threshold functions are ad hoc in 

nature [Kessler, 1969; Sundqvist, 1978; Del Genio et al., 1996; Liu et al. 2006a].  

We have recently derived a theoretical threshold function by truncating the 

collection equation at the critical radius (LDM threshold function hereafter, Liu et al., 

2005). Although the LDM threshold function provides a firm physical basis for the 
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threshold behavior of the autoconversion process, it only considers liquid water content 

(L) and the droplet concentration (N) as independent variables, and assumes a constant 

relative dispersion (ε, defined as the ratio of standard deviation to the mean radius of the 

cloud droplet size distribution). The assumption of a constant ε is a drawback of the LDM 

threshold function, because the spectral shape of the droplet size distribution is expected 

to vary in ambient clouds and to have a significant effect on rain initiation [Hudson and 

Yum, 1997]. Furthermore, both observational and theoretical evidence indicates that 

increasing aerosols concurrently increase N and ε, and the enhanced ε leads to a warming 

dispersion effect on climate [Liu and Daum, 2002; Rostyan and Liu, 2003; Peng and 

Lohmann, 2003; Liu et al., 2006b]. Without explicit specification of ε, the LDM 

threshold function is handicapped in applications such as investigating rain initiation and 

the second indirect aerosol effect [Rotstayn and Liu, 2005]. 

The primary objective of this work is to generalize the LDM threshold function to 

account explicitly for ε in addition to L and N, and to use this new generalized threshold 

function to examine commonly used ad hoc threshold functions.  

2. LDM Threshold Function and Its Generalization 

According to Liu et al. [2005], the threshold function can be generally described 

by  
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where r is the droplet radius, n(r) is the cloud droplet size distributions, and rc is the 

critical radius. Under the assumption that the cloud droplet size distribution is described 

by  
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 the LDM threshold function was derived to be  

   ( )( ) 22
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where r3 is the mean-volume radius, and xc = (rc/r3)3 is the ratio of the critical mass to the 

mean mass of the droplet population. See McGraw and Liu [2003, 2004] and Liu and 

McGraw [2004] for more discussion on the critical radius/mass. The LDM threshold 

function holds only for a special Weibull size distribution that is described by Eq. (3) 

with ε = 0.36, and hence does not consider ε as an independent variable. 

 To incorporate ε, we replace Eq. (3) with the general Weibull size distribution  
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where the Weibull spectral shape parameter q is related to ε by [Liu and Daum, 2000] 
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Theoretical and observational justification for using the general Weibull droplet 

distribution can be found in Liu et al. [1995], Liu and Hallett [1997], and Liu and Daum 

[2000]. Substitution of Eq. (5) into Eqs. (2) and subsequent integration yields the 
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generalized threshold function   
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z
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∞

− −Γ = ∫  is the incomplete Gamma function, and γ() denotes the 

incomplete Gamma function normalized by the corresponding complete Gamma function 

[Press et al., 1992]. Equations (7a) and (7b) show that Tq is determined by xc and q, and 

reduces to the LDM threshold function when q = 3.  

Although Tq as given by a combination of Eqs. (6) and (7) quantifies the 

dependence of the threshold behavior on ε, the dependence has to be determined by 

repeating the procedure of calculating Tq and ε for different values of q. This is not an 

ideal feature for application in atmospheric models, which prefer simple relationships. 

However, Liu et al. [2003] showed that Eq. (6) is well approximated by  

   1q ε −≈ .      (8) 

It is noteworthy that Eq. (8) actually gives the exact results for ε = 0, 1, and ∝, which 

corresponds to q = ∝, 1, and 0, respectively. Substitution of Eq. (8) into Eq. (7) yields 
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The above theoretical analysis shows that the threshold function is determined by 

two dimensionless quantities: xc and ε. Figure 1 shows Tq (solid lines) as a function of the 
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mean-to-critical mass ratio, i.e., the reciprocal of xc at different values of ε. Also shown is 

Tε (dotted lines) to compare its performance with Tq. Two points are evident from Fig. 1. 

First, the dependence of the threshold behavior on the mean-to-critical mass ratio 

gradually changes from a constant of T = 1 to a discontinuous δ-function as ε decreases 

to 0. For a given xc, a larger ε leads to a larger value of the threshold function, and the 

same amount of water converted from cloudwater to rainwater requires a smaller xc 

(higher liquid water content and/or lower droplet concentration) for a smaller ε. These 

results highlight the importance of ε in rain initiation, and are consistent with the 

microphysical theory that droplet collision requires relative velocities resulting from 

droplets of different sizes [Pruppacher and Klett, 1997]. Second, Tε is an excellent 

approximation of Tq for virtually all the combinations of ε and xc, and can be used as a 

substitute for Tq in practice.  

3. Application of Tq to Examining ad hoc Threshold Functions  

To obtain physical understanding of the commonly used ad hoc threshold 

functions, this section examines them by comparing to the theoretically derived 

generalized threshold function. Traditional ad hoc threshold functions can be generally 

classified as Kessler-type, Berry-type or Sundqvist-type according to their mathematical 

form. Briefly, the Kessler-type threshold function is a Heaviside step function [Manton 

and Cotton, 1977; Liou and Ou, 1989; Baker, 1993; Liu and Daum, 2004] 

( )K m cT H r r= − ,     (10) 

where rm and rc denotes the driving and critical radii, respectively. The other extreme is 

often associated with empirical autoconversion parameterizations obtained by fitting 

simulations from detailed microphysical models, which generally have no threshold 
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functions, or implicitly assume a constant threshold function [Berry, 1968; Beheng 1994; 

Khairoudinov and Kogan, 2000], i.e.,  

TB = 1.       (11) 

According to the discussion in Section 2, the Kessler-type and Berry-type threshold 

functions in fact only represent monodisperse and very broad cloud droplet size 

distributions, respectively. Furthermore, because the two extreme spectral shapes are 

unlikely to occur in ambient clouds [Liu and Daum, 2000], neither the Kessler-type nor 

the Berry-type threshold functions are generally applicable  

The Sundqvist-type threshold function lies between the two extremes [Sundqvist, 

1978; Del Genio et al., 1996]. However, traditional Sundqvist-type parameterizations 

account only for L, and are therefore unsuitable for studies of the second indirect aerosol 

effect. Liu et al. [2006a] has recently proposed a generalized Sundqvist-type threshold 

function  

    1 expS cT x µ−⎡ ⎤= − −⎣ ⎦ ,     (12) 

where µ ≥ 0 is an empirical exponent. The generalized Sundqvist-type threshold function 

not only exhibits a smooth threshold behavior, but also encompasses virtually all the ad 

hoc threshold functions: it reduces to the traditional Sundqvist-type threshold functions 

proposed by Sundqvist and Del Genio when µ = 2 and 4, respectively, approximately 

becomes the Berry-type (T = 0.63 not 1) when µ = 0, and approaches the Kessler-type 

when µ approaches ∝ [See Liu et al. 2006a for detailed discussion]. Evidently, Ts is an 

improvement over the traditional ad hoc threshold functions that only work for some 

special spectral shapes of the droplet size distribution. Nevertheless, there is no physical 

basis for Ts, and especially, the physical meaning of µ is elusive.  
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Careful comparison of Ts to Tq further indicates that Ts approximately describes 

the overall threshold behavior of Tq, if µ is a decreasing function of ε [A trial-and-error 

analysis suggests that µ = ε-1. is not a bad approximation]. Unfortunately, Ts can 

accurately describe the threshold behavior only for extremely narrow droplet size 

distributions. For most cases, Ts is only qualitatively correct.  

4. Concluding Remarks 

The theoretical threshold function associated with the autoconversion process 

presented in Liu et al. [2005] is generalized to account explicitly for the effect of the 

relative dispersion of the cloud droplet size distribution. The generalized threshold 

function theoretically shows that the relative dispersion, which has been largely neglected 

to date, essentially controls the initial transition from cloudwater to rainwater for fixed 

liquid water contents and the droplet concentrations. Comparison of the generalized 

threshold function with existing ad hoc threshold functions shows that the threshold 

behavior of the autoconversion process changes from the Berry-type to the Sundqvist-

type to the Kessler-type as the relative dispersion decreases, and that the empirical 

parameter µ in the generalized Sundqvist-type threshold function is a decreasing function 

of the relative dispersion, providing physical explanations for these strikingly different ad 

hoc threshold functions. The comparison also suggests that commonly used ad hoc 

threshold functions only well describe the threshold behavior for some special spectral 

shapes of the cloud droplet size distribution, and none of them accurately describe the 

threshold behavior that likely occurs in ambient clouds. These results indicate that the 

important role of ε in rain initiation has been unknowingly buried in the traditional 

practice of arbitrarily choosing ad hoc threshold functions. 
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It is noted in passing that although the importance of the spectral shape of the 

cloud droplet size distribution in rain initiation has been long recognized, the spectral 

shape effect has been poorly understood and quantified in atmospheric models. The new 

generalized threshold function is likely to improve this situation, and it will be interesting 

to examine the effect of the relative dispersion on modeling results using this generalized 

threshold function. The explicit consideration of the relative dispersion in the generalized 

threshold function also allows for evaluation of the effect of the relative dispersion 

caused by anthropogenic aerosols on rain initiation, and the second indirect aerosol 

effect.  
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Figure Captions 

Figure 1. The generalized threshold function Tq as a a function of the mean-to-critical 

mass ratio (xc
-1). The solid and dotted lines represent results calculated from Tq and its 

approximation Tε, respectively. Note that most curves of Tε overlaps with those of Tq, 

except those with the relative dispersion ε = 1.76.
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